博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Linux后台命令的使用说明
阅读量:6081 次
发布时间:2019-06-20

本文共 5056 字,大约阅读时间需要 16 分钟。

1)ctrl+Z:停止当前进程

首先先将一个程序运行起来,这个时候如果你需要去干别的事情,需要暂停运行,可以使用ctrl+Z:

user@mine:/opt/user/pytorch-gender$ python train_debug.py --debugFile=./debug{
'debugFile': './debug'}Epoch 0/199----------^Z[1]+ Stopped python train_debug.py --debugFile=./debug

从上面可以看见,这个程序已经已经停止了,状态为Stopped

 

2)jobs:用于查看正在运行的命令

user@mine:/opt/user/pytorch-gender$ jobs[1]+  Stopped                 python train_debug.py --debugFile=./debug

前面的编号[1]是命令编号

 

3)bg 命令编号:把程序调度到后台执行:

user@mine:/opt/user/pytorch-gender$ bg 1[1]+ python train_debug.py --debugFile=./debug &user@mine:/opt/user/pytorch-gender$ jobs[1]+  Running                 python train_debug.py --debugFile=./debug &

然后我们可以看见该命令在后台运行起来了,状态为Running,命令后的&标志就是把命令放在后台运行的意思

这个时候该命令生成的返回信息会自己打印出来:

user@mine:/opt/user/pytorch-gender$ train Loss: 0.4611 Acc: 0.7824val Loss: 0.1882 Acc: 0.9340Epoch 1/199----------user@mine:/opt/user/pytorch-gender$ train Loss: 0.3271 Acc: 0.8578val Loss: 0.1845 Acc: 0.9260Epoch 2/199----------

不影响你运行其他的命令,你就输入你的命令回车即可

 当然,如果你不想让输出显示在控制台中,那就在运行时指明将输出信息写入日志文件:

user@mine:/opt/user/pytorch-gender$ python train_debug.py --debugFile=./debug >> gender_log_debug_1.out

打开另一个窗口查看日志文件为:

user@mine:/opt/user/pytorch-gender$ cat gender_log_debug_1.out{
'debugFile': './debug'}Epoch 0/199----------

然后这个时候如果你想进行调试,即,那么你在本地生成文件夹debug后,再查看日志文件变为:

user@mine:/opt/user/pytorch-gender$ cat gender_log_debug_1.out{
'debugFile': './debug'}Epoch 0/199----------train Loss: 0.4507 Acc: 0.7919val Loss: 0.1578 Acc: 0.9420Epoch 1/199----------train Loss: 0.3201 Acc: 0.8576val Loss: 0.1069 Acc: 0.9540Epoch 2/199------------Call--> /home/mine/anaconda3/lib/python3.6/site-packages/torch/autograd/grad_mode.py(129)__exit__() 128--> 129 def __exit__(self, *args): 130 torch.set_grad_enabled(self.prev)ipdb> user@mine:/opt/user/pytorch-gender$

这时候你在命令端输入调试命令u:

user@mine:/opt/user/pytorch-gender$ python train_debug.py --debugFile=./debug >> gender_log_debug_1.outu

可见日志文件中变为:

user@mine:/opt/user/pytorch-gender$ cat gender_log_debug_1.out{
'debugFile': './debug'}Epoch 0/199----------train Loss: 0.4507 Acc: 0.7919val Loss: 0.1578 Acc: 0.9420Epoch 1/199----------train Loss: 0.3201 Acc: 0.8576val Loss: 0.1069 Acc: 0.9540Epoch 2/199------------Call--> /home/mine/anaconda3/lib/python3.6/site-packages/torch/autograd/grad_mode.py(129)__exit__() 128--> 129 def __exit__(self, *args): 130 torch.set_grad_enabled(self.prev)ipdb> > /opt/user/pytorch-gender/train_debug.py(151)train_model() 150 import ipdb;--> 151 ipdb.set_trace() 152ipdb>

如果调用l 123命令:

user@mine:/opt/user/pytorch-gender$ python train_debug.py --debugFile=./debug >> gender_log_debug_1.outul 123

可见日志文件又变为:

user@mine:/opt/user/pytorch-gender$ cat gender_log_debug_1.out{
'debugFile': './debug'}Epoch 0/199----------train Loss: 0.4507 Acc: 0.7919val Loss: 0.1578 Acc: 0.9420Epoch 1/199----------train Loss: 0.3201 Acc: 0.8576val Loss: 0.1069 Acc: 0.9540Epoch 2/199------------Call--> /home/mine/anaconda3/lib/python3.6/site-packages/torch/autograd/grad_mode.py(129)__exit__() 128--> 129 def __exit__(self, *args): 130 torch.set_grad_enabled(self.prev)ipdb> > /opt/user/pytorch-gender/train_debug.py(151)train_model() 150 import ipdb;--> 151 ipdb.set_trace() 152ipdb> 118 labels = labels.to(device) # 当前批次的标签输入 119 # print('input : ', inputs) 120 # print('labels : ', labels) 121 122 # 将梯度参数归0 123 optimizer.zero_grad() 124 125 # 前向计算 126 # track history if only in train 127 with torch.set_grad_enabled(phase == 'train'): 128 # 相应输入对应的输出ipdb>

所以输出和命令输入虽然不在一起,但是并不妨碍功能的实现

 

4)fg 命令编号:将后台命令调到前台运行

如果我想要对上面的命令进行调试,我就需要将其调到前台,然后再进行调试

user@mine:/opt/user/pytorch-gender$ fg 1python train_debug.py --debugFile=./debugtrain Loss: 0.2337 Acc: 0.9059val Loss: 0.1347 Acc: 0.9400Epoch 4/199----------train Loss: 0.2040 Acc: 0.9141val Loss: 0.0962 Acc: 0.9640Epoch 5/199----------train Loss: 0.1984 Acc: 0.9182val Loss: 0.0825 Acc: 0.9720Epoch 6/199----------train Loss: 0.1841 Acc: 0.9218val Loss: 0.1059 Acc: 0.9640Epoch 7/199----------train Loss: 0.1868 Acc: 0.9215val Loss: 0.0668 Acc: 0.9740Epoch 8/199----------train Loss: 0.1782 Acc: 0.9273val Loss: 0.0735 Acc: 0.9740Epoch 9/199----------train Loss: 0.1703 Acc: 0.9291val Loss: 0.0850 Acc: 0.9680Epoch 10/199----------train Loss: 0.1596 Acc: 0.9329val Loss: 0.1114 Acc: 0.9560Epoch 11/199------------Call--> /home/mine/anaconda3/lib/python3.6/site-packages/torch/autograd/grad_mode.py(129)__exit__()    128--> 129     def __exit__(self, *args):    130         torch.set_grad_enabled(self.prev)ipdb>

 

5)nohup 命令 & :直接将命令放在后台运行

nohup python train_debug.py --debugFile=./debug &

如果要指定返回信息写入的日志文件log.out:

nohup python train_debug.py --debugFile=./debug >> log.out &

 

转载于:https://www.cnblogs.com/wanghui-garcia/p/10755205.html

你可能感兴趣的文章
我的Oracle 9i学习日志(8)--创建数据库
查看>>
amazon爬取亚马逊页面信息
查看>>
Java多线程(学习篇)
查看>>
Oracle 11g 使用RMAN备份数据库
查看>>
Centos5下安装tfs并使用nginx做访问
查看>>
EIGRP的路由汇总与认证
查看>>
Hyper-V上Linux的鼠标驱动
查看>>
Windows ADK简介
查看>>
linux基础知识总结(五)
查看>>
详解linux系列之磁盘分区及磁盘配额
查看>>
【iOS-Cocos2d开发之三】CCScene切换的所有特效,以及设置屏幕横竖屏!
查看>>
使用Axis2构建REST Service
查看>>
给群集服务器进行补丁安装的最佳步骤
查看>>
《Effective C++》之条款33:避免遮掩继承而来的名称
查看>>
HTTP499状态码 nginx下499错误及其解决方法
查看>>
BGP路由反射器与联盟详解(上)
查看>>
利用Fierce2查询子域名
查看>>
RPM软件包管理器(RPM Package Manager)
查看>>
一个存储过程实现(问题答案)
查看>>
Windows 2008从入门到精通系列教程(五)
查看>>